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An exact solution of the axisymmetric problem of the theory of elasticity for a hollow circular cone, truncated by two spherical
surfaces (the ends of the cone), taking into account the natural weight or temperature (the inhomogeneous Lamé equations) is
given. The conditions of sliding clamping are satisfied on the conical surfaces, the stresses on one of the ends of the cone are
specified, while the boundary conditions can be arbitrary on the other end. © 2005 Elsevier Ltd. All rights reserved.

The case of inhomogeneous Lamé equations has also been considered previously for other conditions
on the ends [1], but the method used cannot be transferred to the case of inhomogeneous Lamé
equations. The non-axisymmetric problem has been considered for a hollow circular cone, including
when there is a along the generatrix, and for inhomogeneous Lamé equations [2, 3], the results obtained
in [2] need to be refined (see in [4]); other boundary conditions on the ends and on the conical surfaces
were considered in [3].

1. FORMULATION OF THE PROBLEM
We consider an elastic body (with shear modulus G and Poisson’s ratio W) in a spherical system of
coordinates r, 0, ¢, fixed by the relations
ag<r<a;, Wy<6<®, -N<E<R (1.1)

In the axisymmetric case, the problem of the theory of elasticity for such a body is split into the problem
of axisymmetric deformation with the required displacements u, and uq and the problem of twisting
with the required displacement u,,. We will consider axisymmetric deformation. Introducing the notation

2Gu, = u, 2Gug =0, Po= (1-20)", Iy = to+1,
(1.2)
Hyse = Mo+2 = Kly, ¥ = 3-4p

and denoting a derivative with respect to r by a prime, and a derivative with respect to 6 by a dot, we
obtain the following system of equations for the functions u# and v (see, for example, [5])

1 (sinfr) Py (sinfv)’  Bor(sinfy)  _ 2/

(ru) —2u+;—1—* sin® |, sind * Ry sin® - u*q’
(1.3)
2 (sinfv’) v - C a2
(rv) + Uy pe 7% +Ugru' +20,u = -2r gy

1Prikl. Mat. Mekh. Vol. 69, No. 3, pp. 458-468, 2005.
0021-8928/$—see front matter. © 2005 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.jappmathmech.2005.05.009
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Here g, and gq are the components of the intensity of the body forces. The stresses can be expressed
in terms of functions introduced by the formulae [5]

(1-2wyro, = (1 -pyru' +2nu + u(jﬂgl
S (1.4)
(1-2u)r6g = u+pru' + (1 —@)v +Uctgdv, 2r7, = rv'—v+u
We will assume that the conditions of the first fundamental problem
c,(a;;0) = —-p|(8), 7,(a;,0) = q,(0) (1.5)

are specified on the spherical surface r = a,.
The following conditions of sliding clamping are satisfied on the conical surfaces 6 = o; (i = 0, 1)

v(r,w;) =0, T,4r,o) =20 (1.6)

On the remaining spherical surface » = ag all possible cases of the boundary conditions can be satisfied:
the conditions of the first fundamental problem

G (ag, 8) = —po(0), T,e(ap 8) = q(0) (1.7)
the conditions of the second fundamental problem
u(ag 8) = 0, v(ayg6) =0 (L.8)
and the conditions of sliding clamping

u(ag, 8) =0, T4(ag,0) =0 (1.9)

2. THE CASE WHEN THE PROBLEM ALLOWS OF
ELEMENTARY SOLUTIONS

We will construct an exact solution [1] of the boundary-value problem for the homogeneous (g, = g =
0) equations (1.3) in the region (1.1) for the case when the conditions of sliding clamping (1.6) are
satisfied, and the conditions of the first fundamental problem (1.5) and (1.6) are satisfied on the spherical
surfaces, but with

g(8) =0, i=0,1 (2.1)

using the new integral transformation.
However, it has not been noted that the problem allows of a simple solution when

p{0) = p;=const, ¢,0) =0, i=0,1 (2.2)
In fact, if we assume
v(r,0)=0, u(r,0) =0(r), aggsr<a;, WIS, (2.3)

the boundary conditions (1.6) will be satisfied, and the homogeneous equations (1.3) will degenerate
into a single equation

[FQ(n]-29(r) = 0, ay<r<a (2.4)
It can be verified that the general solution of Eq. (2.4) has the form

@(r) = Co(r)+Cyrs C, =const, i=0,1 2.5)
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Taking relations (2.3), (1.4) and (2.5) into account, we can satisfy boundary conditions (1.5) and (1.6),
assuming conditions (2.2). As a result we obtain

-1 3 3, 33
a; — , Ao - poX2 -
[Cy €] = (L (pa Poa;)) (3) 1(py = po) ]’ i=
a;—4ag

T+p
1-2p

and a field of the displacements and stresses for the problem in question will be given by the formulae

u(r,0) = Cor—C,r>, 0(r,0)=0, T,4(r,0)=0
) i (2.6)
[6,, O] = [l (1+1W)HolCo+[2,11C,r™

We obtain the same elementary solution when there is sliding clamping (1.9) or complete adhesion
(1.8) on the spherical boundary r = a,. In both cases the displacement and stress fields will be given
by formulae (2.6), and only the formulae for the normal stresses

[6, 6] = ACy+[2,11C,r" 2.7)

will be changed and there will be other values for Cy and C4

~ -1
[Co, C11 = aip,(fia; +2a3) [-1, 0] 2.8)

The formulae obtained are the same for a hollow cone (w; #0, i = 0, 1) as for a solid cone
(o1 # 0, oy = 0). They will also be true for a spherical layer ag<r<a;,0< 08 <7, -t < ¢ < . However,
the elementary solutions obtained lose their meaning if requirement (2.2) breaks down or Egs (1.3)
themselves turn out to be in homogeneous (g,, g¢ # 0). In that case the method used previously [1] enables
one to dispense with requirement (2.1), but it turns out to be inapplicable if Eqs (1.3) are inhomogeneous,
i.e. when the problem of free thermoclasticity is solved and, of course, on the right-hand sides of Eqs
(1.3) the previously obtained derivatives of the temperature [5] occur.

Equations (1.3) correspond to the case when there are body forces present. If the axis of the cone
(1.1) is directed vertically upwards, and we take the force of gravity as the body forces (the specific
gravity of the material of the cone is denoted by 7), then in Egs (1.3) we must take

Below we will describe a method of constructing an exact solution of the above problems for a cone
(1.1) in the case of inhomogeneous equations (thermoelasticity), in particular when the natural weight
is taken into account, i.e. when relations (2.9) are satisfied.

3. REDUCTION OF THE PROBLEMS TO A VECTOR
ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEM

We will apply an integral transformation with respect to the variable 0 to the system of equations (1.3),
so that boundary conditions (1.5) are satisfied, and which are equivalent to the conditions

wrom) =0, u(rhw)=0 i=0,1 (3.1)

In order that these conditions should be satisfied, it is necessary to apply the previously obtained
integral transformation [1, 6] to Eqgs (1.3), i.e. to change to the transforms

W, @
V,(r) = J‘(ptl,(e, v )u(r, 8)sinfdd = J-y(e, v, )u(r, 0)sinBd0
g @,
o o, (3.2)

u(r) = jcp?(e, Vu(r, 0)sin@d® = [ y,.(8,v)u(r,0)sin0d0; k = 0,1,2, ...

®g @y
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The second equalities are written in terms of the previously employed notation [6]

(0,v) = (8, V)|, -, = 0B, v))

o (3.3)
Y*(&Vk) = yl(e’vk),u=0‘ho=0,h1=0 = (Pc(e’vk)

(here p is the superscript in the spherical functions Py (cos8) and Q% (cos6) [7], which satisfy Legendre’s
equation and were used previously in [6], where, in order to write the boundary conditions, the real

numbers A, and /1; were introduced, and for the conditions used here sy = A; = 0). In this case [1, 6]

¥(8,v) = Pl(cos8)0)(cosm,) - Ph(cosw,)Qv(cosB), v = v,

(3.4
yx(0,v) = Pv(cose)Q\l,(cosml)—P\l,(coscol)QV(cose), vV =y,
(8, V) = y(8,v,) (3.5)
and v (k = 0, 1, 2, ...) are the roots of the transcendental equation
Qi = Pi(cos wO)Q\l,(cosml) - Pi(cosa)l)Q\l,(cos(oo) =0 (3.6)

The eigenfunctions (3.4) satisty Legendre’s equation when i = 1 and p = 0 respectively (in the latter
case the superscript u = 0 is omitted). The follow conditions are satisfied for these

)’(C‘),’, Vk) = 05 y:‘k(o‘)p Vk) = 07 i = 0’ 1 (3.7)
The following inversion formulae have been established [1, 6] for transforms (3.2)

2v, + 1 lagi -
v Z ey R R

(3.8)

1_-1

0Q,
u(r,0) = —Z U (r)(2v, + 1)[ Y3y } } ky*(e, vy)

Si = Pi(cosml)/P\l,(cost) = Q\l,(coswl)/Q\l,(cosmo), v=yv, k=01,..
In order to change to the transforms (3.2) in Eqs (1.3) we must multiply the first equation of (1.3)

by sinfy+(0, v;) and the second by sinfy(8, v;) and integrate by parts over the section [wg, w;]. As a
result we will have

[’Z”I’c(r)]' =2u(r) - H;I[N“k(”) ~ Py Vp(7) + Porvp(n)] = rzqk

(3.9)
[P0, (P)] = L NUL(r) + 205 Nuy(r) + Lo Nruy(r) = g, ay<r<a,
where
sin20y(6, v )y
N = V(v + 1), T Zy( M | g (3.10)
| qx @, 2sin Gy*(e, Vk)

Here we must take into account Legendre’s equation which the eigenfunctions y(8, v;) and y*(8, v)
satisty, and also relations (3.1), (3.7), (3.5) and (2.9).
Boundary conditions (1.5) and (1.8) in transforms (3.2) can be written in the form

a, v (a;) - va)) + Nug(a)) = 2a,9,; G
(1 —wa up(ay) - 2pu(a)) - pulay) = ~(1-2wa; py; '
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u(ag) =0, vlay) =0 (3.12)
where
o, o,
Pa = jp,-(ﬂ)y*(e, v,)sin8db, g, = qu(e)y(e, V)sin®de; i = 0,1 (3.13)
[ Wy

Boundary conditions (1.7) in transforms (3.2) are converted into conditions (3.11) with a; replaced
by ay, while boundary conditions (1.9) are written in the form

u(ag) = 0, agv(ag) - vay) =0 (3.14)

Hence, all the versions of the problem can be reduced to a one-dimensional boundary-value problem
for Eqs (3.9). It is more convenient to transfer this boundary-value problem, specified in the section
[ag, a1], to the section [, 1], o = ag/a; < 1 using the replacement

r=ap, wlap) = uw(p), vlap) = U(p) (3.15)

For the new required functions, the system of equations (3.9) retains its previous form (if we denote
a derivative with respect to p by a prime) and will be specified in the section o < p < 1.

Boundary conditions (3.11), (3.12) and (3.14) must also be written for the new functions i(p), T(p).
For example, boundary conditions (3.11) and (3.12) take the form

U(1) = D(1) + Nug(1) = 2a,qy,
(1= Wi (1) = 20i(1) —uD(1) = ~(1-2w)a, py, (3.16)
ak(a) = 0, i)k(a) = 0

We will write the one-dimensional boundary-value problem obtained in vector form, for which we
introduce the required vector y(p) and the specified vector f(p) and matrices of the form

u(
s = | WO gy = o) o
U(p) ~qy
(317
-1 - _
Pl -2-Niy  Muwlts | 7= 100 o= 0-uy
2u N (HsN) 01 N 0
and also the boundary functionals
Ully(p)] = Ay(a)+By'(a), i=0,1; ap=oa, o =1 (3.18)
with matrices and vectors of the form
A= N -1 , B = 0 1 , = “24u »Ag=1,By=0,7,=0 (3.19)
pITR I-p 0 (1-2W)py,

We can now write boundary-value problem (3.9), (3.16) in vector form as

Ly(P)=11py (9] + 1o0py'(p) + Py(p) = £(p). a<p<1

(3.20)
UI[Y(p)] Eai‘Y,», i = 0, 1

All the versions of this problem can be reduced to the same vector problem (3.20), and only the form
of the boundary functionals (3.20) and the vectors v, and y; will be changed. '
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Similar problems of uncoupled thermoelasticity can be reduced to the same vector problem, and only
the form of the vector f(p) will be changed.

4. A PARTICULAR SOLUTION OF THE VECTOR PROBLEM, WHICH
GIVES AN EXACT SOLUTION FOR THE SPECIAL CASE OF THE
PROBLEMS IN QUESTION

If we obtain Green’s matrix G(p, §) and the basis system of the matrices ¥;(p) (j = 0, 1), the solution
of boundary-value problem (3.20) can be written in the form [8]

1

¥(p) = [G(p, BIE)AE — ¥o(p)agyo— ¥ (PlayY, (41)

o

In order to construct the matrices G(p, &) and ¥,(p), we need to know the fundamental system
Yi(p) (j = 0, 1), i.e. to construct two linearly independent solutions of the matrix equation

L,Y(p) =0, a<p<l 4.2)

It can be shown that the solution of Eq. (4.2) will be the function

V(p) = 5 fo'M " (s)ds 43)
C

Here M~'(s) is the inverse of the matrix

M(s) = Is(s+ 1)+ PoQs+ P = My My

My My
my = s+ D=2/, mpy = ~(Hs = My (4.4)
My = (LS + 20N, my = s(s+1) =N

obtained by carrying out the operations L,p’l, and C is a closed contour enveloping the pole of the
matrix M~ (s).
By the well-known scheme for constructing an inverse matrix, we obtain

M) = My =My

P4(s) —Myy My
\ (4.5)

4 3 2
pa(s) = detM(s) = " +25" ~ (2N + 1)s" = 2(N+ )s+ N(N-2) = ] (s~
j=1
where

sp=v+l, s =v-1 sy =-vy, sy = -y -2 (4.6)

It can be seen that the integral (4.3) is equal to the sum of the residues at the poles (4.6). Then, if
we assume v > 1 (k = 0, 1, 2, ...), the residues at the first two poles give functions which increase as
p — oo, while at the remaining poles they decrease as p — oo.

In order to evaluate the matrix integral (4.3), it is sufficient, by Eq. (4.5), to have available the values
of the following scalar integrals

1 §p5[1, s, s(s + 1)}ds @

[(P(p)’ ‘Pl(P), (Pz(P)] = Q;C_i p4(S)
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It is then only necessary to obtain ¢(p), since it can be shown that

0,(p) = pO'(p),  0x(p) = [P P (P)Y

Evaluating the integrals (4.7) as the sums of the residues at the poless; = v + 1,5, = v~ 1, we obtain
the solutions Yy(p) of matrix equations (4.2), which increases as p — oo. If we take the residues at the
poles s3 = -v, s, = —v — 2, we obtain the second solution Y;(p) of Eq. (4.2), which decreases at infinity
and is linearly independent with respect to Yy(p).

Carrying out these operations we obtain the formulae

1 -2

Yo(p) = pV+ Rv+1A+(V)—pv_1RvB+(V)’ Yi(p) = p—vRvA—(V)"‘p—v R, ,1B_(V) (4 8)
R, = [2Q2v+ D(2v-DT"
The matrices A.(v) and B.(v) are defined by the formulae (u; = [2(1 - W™
Ay) = Qv+ —pN i (v —2)
—PeN(V+K+2) WN+2v
B.(v) = —(UgN +2v) 2-pv
" N ~[2(v+ 1) - N
HoN(V + %) [2(v+1) - N] 49)
A (V) = ~UpN -2V —Hi(V+K)
i PNV —4(1-w)]  N=-2(v+1)
B (v) = ~[HeN -2(v+1)] U (V+K+2)
N(pev-2) U N+2v

In formulae (4.8) and (4.9) and everywhere below the symbol v means the eigenvalues vi(k = 0, 1,
2,...).
Hence, the general solution of Eq. (4.2) will have the form

Y(p) = Yo(p)Co+ Y 1(p)C, (4.10)
where Cy and C; are matrix-constants.

If we have the fundamental system of solutions (4.10) of matrix equation (4.2), we can construct a
basis system of matrix solutions ¥y(p) and ¥;(p), which satisfy the matrix boundary-value problem (5;
is the Kronecker delta) '

LY¥,(p) =0, a<p<l, UlI¥]1=238;L; ij=01 (4.11)

By relation (4.10) they will be constructed in the form

¥,(p) = Yo(p)Ci’ + Vi (p)CY, = 0,1 (4.12)

while the matrices C Ej) (i,j = 0, 1) are found from boundary conditions (4.11). For example, we will
have the following equations for ¥4(p)

Upl Yo(@ICE + Ugl Y ((pICTY = 0, U\[¥(mICy” + U\ TY (pICY = 1 (4.13)

By relations (3.18), (3.19) and (4.8) we obtain

v

UlVo(p)] = Yo(o) = ' " 'R,C.(V), UplYy(p)] = ¥y(@) = o “?R,C_(V) (4.14)



424 G. Ya. Popov
where
C,(v) = B,(vV)+o’b A, (v), C(v) = oA (V)=b,B.(V); b, = R,'R,,, (4.15)
Substituting expressions (4.14) into the first equation of (4.13), we obtain the relation
= 'pw)cl”, D) = C'(v)C_(v) (4.16)
We can similarly obtain

UiLY(p)] = Ry, Ar(V) + R B.(V) = D(V)

U\[Y,(p)] = RA(V)=R,, B(V) = D_(V) 17
where
A,(V) = A(W)A,(V), Bu(v) = A(V-2)B,(V)
A_(v) = A(=v-1A_(v), B_(v) = A(~v-3)B_(v) (4.18)

N Y
v+l-uv-1) —p

A(v) =

and in all the elements of the matrix A(v) we have made these replacements of the number v, except
N = v(v + 1), the expression for which remains unchanged.

Substituting expression (4.16) into the second equation of (4.13), after multiplying the equation
obtained by 02V +1, we obtain

2v+1

¢V = o' [D,(m)DV) + o™ ' D_(v)I” (4.19)

Taking (4.16) into account, we obtain the second matrix constant
, -1
o) = DWID(V)D(V) +a™ "' D_(v)] (4.20)

Substituting expressions (4.19) and (4.20) into (4.12), we obtain ¥;(p).

Using similar operations we can also obtain Wg(p), i.e. the construction of the basis system of the
matrix boundary-value problem (4.1) is completed.

We will consider a special case of the problems of the theory of elasticity formulated above: we ignore
the natural weight of the cone (1.1) (f(p) =0, i = 0, 1) and assume that boundary conditions (1.5)(1.7)
and (1.9) are satisfied, i.e. yq = 0, while v, is defined by the third formula of (3.19). The solution of
vector problem (3.20), by virtue of relations (4.1), can then be written in the form

24,
(1-2p)pyy

u (p)

- = a;¥(p)
U (p)

(4.21)

i.e. it is sufficient merely to know the single matrix ¥;(p), obtained above. From & (p), Ox(p) obtained,
by virtue of formulae (3.15) we obtain the transforms of the displacements

u(r) = w(ria)), v(r) = O(rla)) (4.22)

Substituting these into expressions (3.8) we obtain the displacements themselves and we thereby
complete the construction of the exact solution for the special case of the problem under discussion.

We will consider once again the case when ay = 0, i.e. there is a spike in the cone (1.1). We must
then take the limit as o > 0 in the formulae obtained. Then

C,(v) = B(v), C.(V) = —b,B (V) (4.23)



Axisymmetric problems of the theory of elasticity for a truncated hollow cone 425

and inversion of the matrix C(v) reduces to inversion of the matrix B, (v). Carrying out this inversion
using the well-known procedure, we obtain

-B - 1)- -2
B v) = B(v) B(v) = 2(v+ D) =yN v
HoNA(V) ~UN(V+K) PN +2v (4.24)
h(v) = N+ 20+ 1, v) + (V+K) (1 Vv —-2)
By virtue of relations (4.15), (4.16) and (4.24) the matrix D(v) takes the form
D(v) = by[RoNA(V)]" B(V)B_(¥)
and we obtain from relations (4.16) and (4.19)
¢t = pwID,pWT", ¢ = &' [D, D] (425)

When o — 0, by virtue of expression (4.19) C(ll) = 0, and hence formula (4.12) takes the form
¥,(p) = ¥o(p)DWID, (VDM
As above, knowing ¥(p), by Eq. (4.21) we obtain the transforms (4.22), and from them, using the

inversion formulae (3.8), we also obtain the required displacements u(r, 0) and v(r, 6).

5. CONSTRUCTION OF GREEN’S MATRIX OF THE VECTOR
BOUNDARY-VALUE PROBLEM AND THE EXACT SOLUTION OF
THE PROBLEM

As we can see, for the complete solution of the vector problem in accordance with expression (4.1) we
need to construct Green’s matrix G(p, &).

To do this we first construct the fundamental matrix ®(p, &), i.e. such a matrix that the solution of
the inhomogeneous differential equation of the problem (3.20) can be written in the form

1
y(p) = [®(p, EI(E)dE (5.1)

With this aim, we will write the equation mentioned in the form
Lyy(p) = f(p), O<p<eo (¢2)

assuming that the right-hand side is only non-zero in the section [o., 1]. To find the solution of Eq. (5.2)
we will apply an integral Mellin transformation to it, i.e. we change to the transforms

o0 1
yo = [0 'y(p)dp, £, = [ERE)E (53)
0 o3

As a result we arrive at the following algebraic equation
M(s)y, = £, M(s) = M(-s) (5.4)
The matrix M(s) is defined by formulae (4.4).

Solving algebraic equation (5.4) and inverting the Mellin transforms (5.3), we obtain a solution of
Eq. (5.2) and thereby obtain the fundamental matrix

o) g < [ (s
D(p, &) = écp(&), ®(x) = 2m_!‘M (=s)x"ds (5.5)
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If we assume v, > 1 (kK =0, 1, 2, ...), the contour / will be a straight line parallel to the imaginary
axis and intersecting the real axis in the interval (0, 1). Then, as in Section 4, the matrix integral (5.5)
reduces to calculating the scalar integrals

-
1 ¢x [l,s,s(s—l)]ds;

2—751'[ Pa(=9) Li(x) = —xIy(x), Ix) = [xzﬂ)(x)]' (5.6)

[To(x), 11(x), I,(0)1 =

where it is sufficient merely to evaluate the first integral, while the remaining ones, as previously, can
be evaluated from the last two formulae of (4.6). Using the standard scheme of contour integration,
we obtain

-V —(v+2)
~ 1{x R,-x R,.1, x>1
Io(x) = z{ T (.7)
x R,-x "R,,. x<l
Hence, from Eqs (5.5) and (5.6) we have
T2(x) = W NIg(x —u, 1 + %1
O(x) = z(N) My of ) ) Hil1(x) b o(jf)] 5.8)
Nlugl(x) = 24 lo(x)] I(x) = (2 + Py N)lo(x)
Green’s matrix can now be obtained from the formula [8]
1
G(p,&) = ®(p, &)~ ¥ ¥,(P)(U,;[®(p,&)]) (5.9)

j=0

The matrices W/(p) are defined by formulae (4.12), where the matrix W;(p) is completely defined and
Wo(p) is found 1n a similar way.

Hence, formula (4.1) when v, = 0, taking expressions (5.9) and (4.12) into account, gives the solution
of the vector boundary-value problem, and together with this also an exact solution of the problem of
the theory of elasticity in question in the case of boundary conditions (1.5), (1.6) and (1.8). For the
boundary conditions (1.7) and (1.9) the proposed scheme is completely preserved; only the form of the
boundary functional Uy[y(p)], defined by formula (3.18), is changed.
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