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An exact solution of the axisymmetric problem of the theory of elasticity for a hollow circular cone, truncated by two spherical 
surfaces (the ends of the cone), taking into account the natural weight or temperature (the inhomogeneous Lam6 equations) is 
given. The conditions of sliding clamping are satisfied on the conical surfaces, the stresses on one of the ends of the cone are 
specified, while the boundary conditions can be arbitrary on the other end. © 2005 Elsevier Ltd. All rights reserved. 

The case of inhomogeneous Lain6 equations has also been considered previously for other conditions 
on the ends [1], but the method used cannot be transferred to the case of inhomogeneous Lain6 
equations. The non-axisymmetric problem has been considered for a hollow circular cone, including 
when there is a along the generatrix, and for inhomogeneous Lam6 equations [2, 3], the results obtained 
in [2] need to be refined (see in [4]); other boundary conditions on the ends and on the conical surfaces 
were considered in [3]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider an elastic body (with shear modulus G and Poisson's ratio g) in a spherical system of 
coordinates r, 0, % fixed by the relations 

a o < - r < - a  I , f-D0 ~ 0 <-- 0) 1 , - - ~  ( p K g  (1.1) 

In the axisymmetric case, the problem of the theory of elasticity for such a body is split into the problem 
of axisymmetric deformation with the required displacements Ur and u0 and the problem of twisting 
with the required displacement ue. We will consider axisymmetric deformation. Introducing the notation 

2 G u  r = u,  2Gu o = V, go = ( 1 - 2 g )  -1, 

g** = g0 +2 = ~;g0, K = 3 - 4 g  

g ,  = g o + l ,  
(1.2) 

and denoting a derivative with respect to r by a prime, and a derivative with respect to 0 by a dot, we 
obtain the following system of equations for the functions u and v (see, for example, [5]) 

(r2u, ) ,_2u+ 1 (sin0u')" g**(sin0v)" g0r(sin0t)')" 2r 2 
~t, sin0 g ,  sin0 F ~t, sin0 g ,  qr 

g , (  " sin0l) ) v + l.toru" + 2g,u" = -2r2q0 
(r2v')' + sin0 s i~0 

(1.3) 

~fPrikl. Mat. Mekh. Vol. 69, No. 3, pp. 458-468, 2005. 
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Here qr and q0 are the components of the intensity of the body forces. The stresses can be expressed 
in terms of functions introduced by the formulae [5] 

( sin 0 v) 
(1 - 2g)r(y r = (1 - B)ru' + 2gu + g ~ (1.4) 

( l - 2 g ) r ( y  0 = u + g r u ' + ( 1 - g ) v ' + g c t g O l ) ,  2r'~r0 = r v ' - v + u "  

We will assume that the conditions of the first fundamental problem 

(Yr(al, 0) = -p l (0 ) ,  "Cr0(al, 0) = ql(0) (1.5) 

are specified on the spherical surface r = a 1. 
The following conditions of sliding clamping are satisfied on the conical surfaces 0 = co/(i = 0, 1) 

v(r, o)i) = 0, "c~0(r, o~i) = 0 (1.6) 

On the remaining spherical surface r = a0 all possible cases of the boundary conditions can be satisfied: 
the conditions of the first fundamental problem 

(Yr(ao, 0) = -p0(0),  "Cro(ao, 0) = q0(0) (1.7) 

the conditions of the second fundamental problem 

u(a o, O) = O, 

and the conditions of sliding clamping 

u(ao, O) = O, 

V(ao, 0) = 0 (1.8) 

xr0(a0, 0) = 0 (1.9) 

2. THE CASE W H E N  THE P R O B L E M  A L L O W S  OF 
E L E M E N T A R Y  S O L U T I O N S  

We will construct an exact solution [1] of the boundary-value problem for the homogeneous (qr = qo = 
0) equations (1.3) in the region (1.1) for the case when the conditions of sliding clamping (1.6) are 
satisfied, and the conditions of the first fundamental problem (1.5) and (1.6) are satisfied on the spherical 
surfaces, but with 

qi(O) = 0, i =  0,1 (2.1) 

using the new integral transformation. 
However, it has not been noted that the problem allows of a simple solution when 

Pi(O) = p i - c ° n s t ,  qi(O) = 0, i = 0,1 (2.2) 

In fact, if we assume 

v(r, 0 ) - 0 ,  u(r, 0) = q~(r), a o < r < a  1, m0<0<c01 (2.3) 

the boundary conditions (1.6) will be satisfied, and the homogeneous equations (1.3) will degenerate 
into a single equation 

[rZq)'(r)]'-2q)(r) = O, a o < r < a  1 

It can be verified that the general solution of Eq. (2.4) has the form 

q)(r) = Co(rJ+Clr-2;  C i = const, i = 0, 1 

(2.4) 

(2.5) 
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Taking relations (2.3), (1.4) and (2.5) into account, we can satisfy boundary conditions (1.5) and (1.6), 
assuming conditions (2.2). As a result we obtain 

r - - 1 .  3 3 ,  3 3 

[C0, C1 ] = tb t (p la l -Poao) ,aoa l (p l -Po) /21  ~ _  l + g  
3 3 ' 1 -2bt  

a I - a 0 

and a field of the displacements and stresses for the problem in question will be given by the formulae 

u(r,O) = C o r - C l r  -2, v(r ,O)=O,  "~ro(r,O)=O 

[~s r, %] = [~t, (1 + g)go]Co + [2, 1]C1 r-3 (2.6) 

We obtain the same elementary solution when there is sliding clamping (1.9) or complete adhesion 
(1.8) on the spherical boundary r = a0. In both cases the displacement and stress fields will be given 
by formulae (2.6), and only the formulae for the normal stresses 

[¢~., (Sol = ~Co+ [2, 1]C1 r-3 (2.7) 

will be changed and there will be other values for Co and C1 

3 - 3 3 - 1  3 
[Co, C1] = alp l (ga  1 + 2ao) [-1, ao] (2.8) 

The formulae obtained are the same for a hollow cone (mi ~ 0, i = 0, 1) as for a solid cone 
(01 ;~ 0, COo = 0). They will also be true for a spherical layer a0 - r ___ al, 0 _< 0 _< 7~, -7~ _< q~ < g. However, 
the elementary solutions obtained lose their meaning if requirement (2.2) breaks down or Eqs (1.3) 
themselves turn out to be in homogeneous (qr, q0 ~ 0). In that case the method used previously [1] enables 
one to dispense with requirement (2.1), but it turns out to be inapplicable if Eqs (1.3) are inhomogeneous, 
i.e. when the problem of free thermoelasticity is solved and, of course, on the right-hand sides of Eqs 
(1.3) the previously obtained derivatives of the temperature [5] occur. 

Equations (1.3) correspond to the case when there are body forces present. If the axis of the cone 
(1.1) is directed vertically upwards, and we take the force of gravity as the body forces (the specific 
gravity of the material of the cone is denoted by 7), then in Eqs (1.3) we must take 

qr = -ycosO, qo = ysinO, ¢.o o < 0 < (o I (2.9) 

Below we will describe a method of constructing an exact solution of the above problems for a cone 
(1.1) in the case of inhomogeneous equations (thermoelasticity), in particular when the natural weight 
is taken into account, i.e. when relations (2.9) are satisfied. 

3. R E D U C T I O N  OF T H E  P R O B L E M S  TO A V E C T O R  
O N E - D I M E N S I O N A L  B O U N D A R Y - V A L U E  P R O B L E M  

We will apply an integral transformation with respect to the variable 0 to the system of equations (1.3), 
so that boundary conditions (1.5) are satisfied, and which are equivalent to the conditions 

v(r, c0i) = 0, u (r, mi) = 0; i = 0,1 (3.1) 

In order that these conditions should be satisfied, it is necessary to apply the previously obtained 
integral transformation [1, 6] to Eqs (1.3), i.e. to change to the transforms 

o~ I co 1 

agk(r) = f ~pla(o, vk)v(r, O)sinOdO = Iy(O, vk)v(r, OlsinOdO 

fl)O (90 

~01 0) 1 

u~(r) = I o %(0, vk)u(r, 0)sin0d0 = I y . ( 0 ,  vk)u(r, 0)sin0d0; 

(0 0 O~ 0 

k = O ,  1,2 . . . .  

(3.2) 
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The second equalities are written in terms of the previously employed notation [6] 

1 
y(0, Vk) = Y0(0, Vk)lr t = 1 = q Ia (0 '  Vk) 

0 
y, (0 ,  Vk) = Y l ( O ,  V k ) l g = O ,  ho=O, h l=O = q 0 c ( 0 ,  V k )  

(3.3) 

(here g is the superscript in the spherical functions P~v(cos0) and Q~v(COS0) [7], which satisfy Legendre's 
equation and were used previously in [6], where, in order to write the boundary conditions, the real 
numbers h0 and h I were introduced, and for the conditions used here h0 = hi = 0). In this case [1, 6] 

y(0, v) plv(COSO)Qlv(COS 1 1 = C01) - Pv(cOs O~l)Qv(cOs0), 

1 1 
= 0~1) - ev(cOSml) Qv(cOs0), y . (0 ,  v) Pv(COs0)Qv(COS 

V = V  k 

(3.4) 
V = V  k 

y, (0 ,  Vk) = y(0, Vk) (3.5) 

and vk (k = 0, 1, 2 . . . .  ) are the roots of the transcendental equation 

1 ply ( cos 0)0) e~ ( cos o)1 ) 1 1 f2v~ - Pv(COS0ll)Qv(cos0)0) = 0 (3.6) 

The eigenfunctions (3.4) satisfy Legendre's equation when g = I and ~t = 0 respectively (in the latter 
case the superscript g = 0 is omitted). The follow conditions are satisfied for these 

Y(~ i ,  Vk) = 0, y',(O~i, Vk) = 0, i = 0, 1 (3.7) 

The following inversion formulae have been established [1, 6] for transforms (3.2) 

v ( r ,  0) i 2vk + 1 r- 10~')17 -1 
= _ Vk(r )Vk(V  k + 1) ~Sv--~--jv = vk y(0' vk) 

k = 0  

i r l a a lq  
.(r ,  0 / =  - .k(r/(2v  + 1)LSv-g-¢J v = v y . ( e ,  vk/ 

k = 0  

S v = P v ( C O S m l ) / P v ( c o s m o )  = Q (costal)/Q (costa0), v = v k, k = 0, 1 . . . .  

(3.8) 

In order to change to the transforms (3.2) in Eqs (1.3) we must multiply the first equation of (1.3) 
by sin0y.(0, Vk) and the second by sin0y(0, vk) and integrate by parts over the section [m0, col]. As a 
result we will have 

2 i ~ w 2 
[r u~(r)] - 2 u k ( r  ) - g , l [ N U k ( r )  - ~t**'0k(r) + P.0r~lk(r)] = r qk 

2 , , , 2 , 
[r l)a(r)] - I . t ,N1)k(r)  + 2 b t , N U k ( r )  + g o N r u k ( r )  = - r  q k ,  ao < r < a 1 

(3.9) 

where 

~ol sin20y(0, v~)g.  1 dO 
qk = Yf0 (3.10) N = Vk(Vk+ i), q* 2sina0y.(0,  V~) 

Here we must take into account Legendre's equation which the eigenfunctions y(0, Vk) and y* (0, v~) 
satisfy, and also relations (3.1), (3.7), (3.5) and (2.9). 

Boundary conditions (1.5) and (1.8) in transforms (3.2) can be written in the form 

t 
a l v k ( a l )  - 1)k(al) + N u k ( a  1) = 2 a l q l k  

( 1 -- bt)a 1 u'k(a 1 ) -- 2}.tu/c(a I ) - g v k ( a l )  = -(  1 - 2bt)a 1Plk 
(3.11) 
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uk(ao) = O, vk(a o) = 0 (3.12) 

where 

ml f-ol 

Pik = IPi(O)y*(O, vt)sin0d0, qik = Iqi(O)y(O, Vk)sin0d0; i = 0, 1 (3.13) 
o~ o O3 0 

Boundary conditions (1.7) in transforms (3.2) are converted into conditions (3.11) with a~ replaced 
by a0, while boundary conditions (1.9) are written in the form 

uk(ao) = O, aoO'k(a o ) -  vk(a o) = 0 (3.14) 

Hence, all the versions of the problem can be reduced to a one-dimensional boundary-value problem 
for Eqs (3.9). It is more convenient to transfer this boundary-value problem, specified in the section 
[ao, al], to the section [a, 1], ~ = ao/al < 1 using the replacement 

r = a19, uk(alP) = •(P),  l)k(al9) = ~)k(9) (3.15) 

For the new required functions, the system of equations (3.9) retains its previous form (if we denote 
a derivative with respect to p by a prime) and will be specified in the section a < p < 1. 

Boundary conditions (3.11), (3.12) and (3.14) must also be written for the new functions gtk(9), a3~(p). 
For example, boundary conditions (3.11) and (3.12) take the form 

~)'k(1) - bk(1 ) +NUk(1) = 2alqlk 

( 1 -- It) fi'k( 1 ) -- 2ItS( 1 ) -- ItVk( 1 ) = --( 1 -- 2It)a~plk (3.16) 

fi~(a) = 0 ,  ~k(a) = 0  

We will write the one-dimensional boundary-value problem obtained in vector form, for which we 
introduce the required vector Y(9) and the specified vector f(p) and matrices of the form 

y(p) = ilk(P)~)k(p) ' f(9) = a~ -q~'qk 192 

e = - 2 - N i t ,  1 It**g,1 , I = 1 0 , 
2 g . N  ( - i t ,N)  0 1 

Q = 0 _it,1- 

N 0 

(3.17) 

and also the boundary functionals 

Ui[Y(9)] = Aiy(o~i)+ Biy'(Ri), i = 0, 1; s 0 = ct, ~1 = 1 (3.18) 

with matrices and vectors of the form 

A l =  N -1 , B1= 0 1 , YI = -2ql~ 

2 g - I t  1 - I t  0 (1-21.t)plk 
, A o =  l, Bo=O, Yo=O (3.19) 

We can now write boundary-value problem (3.9), (3.16) in vector form as 

L 2 y ( p ) - I [ p 2 y ' ( p ) ] ' + g o Q p y ' ( p ) + P y ( p )  = f(p), c t < p < l  

Ui[y(p)] = ai~[i , i = O, 1 
(3.20) 

All the versions of this problem can be reduced to the same vector problem (3.20), and only the form 
of the boundary functionals (3.20) and the vectors ~/0 and ~/1 will be changed. 
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Similar problems of uncoupled thermoelasticity can be reduced to the same vector problem, and only 
the form of the vector frO) will be changed. 

4. A P A R T I C U L A R  S O L U T I O N  OF THE V E C T O R  P R O B L E M ,  W H I C H  
GIVES AN EXACT S O L U T I O N  FOR THE S P E C I A L  CASE OF THE 

P R O B L E M S  IN Q U E S T I O N  

If we obtain Green's matrix G(p, ~) and the basis system of the matrices Wj(P) (J = 0, 1), the solution 
of boundary-value problem (3.20) can be written in the form [8] 

1 

y(p) = ~G(9, ~)f(~)d~ - Wo(p)aoTo - ~d~ (9)a~7~ (4.1) 
ct 

In order to construct the matrices G(p, {) and ~ (p ) ,  we need to know the fundamental system 
Yj(P) (J = 0, 1), i.e. to construct two linearly independent solutions of the matrix equation 

L 2 Y(13) -= 0,  0~ < 13 < 1 (4.2) 

It can be shown that the solution of Eq. (4.2) will be the function 

Y(9) = ~gigi~pSM-' (s) ds 
C 

Here M-l(s) is the inverse of the matrix 

M(s) = Is(s+ 1)+~toQs+P = m11 mlz 
m21 m22 

m~t = s(s+ l ) - 2 - g . I N ,  m12 = - ( g 0 s - g * * ) g .  t, 

m21 = (~t0s+2g,)N, m22 = s ( s + l ) - g , N  

(4.3) 

(4.4) 

obtained by carrying out the operations L2pSI, and C is a closed contour enveloping the pole of the 
matrix m-l(s). 

By the well-known scheme for constructing an inverse matrix, we obtain 

M l(s) = p@(s) rn22 -m12 
-m2t ml I 

4 

p4(s) = detM(s) = s4+2s3-(2N+ 1) s2 -2 (N+  1) s+N(N-2 )  = 1--[(S--Sj) 
j = l  

(4.5) 

where 

sl = vk+ 1, s 2 = v k -  1, s 3 ---- --Vk, S 4 = --Vk--2 (4.6) 

It can be seen that the integral (4.3) is equal to the sum of the residues at the poles (4.6). Then, if 
we assume vk > 1 (k = 0, 1, 2 . . . .  ), the residues at the first two poles give functions which increase as 
p ~ ~ ,  while at the remaining poles they decrease as P ~ oo. 

In order to evaluate the matrix integral (4.3), it is sufficient, by Eq. (4.5), to have available the values 
of the following scalar integrals 

l__~£ps[1, s, s(s + 1)] ds 
[~P(P), %(P), q~2(P)] = 21tiJ p 4 ( s )  (4.7) 
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It is then only necessary to obtain q~(p), since it can be shown that 

%(9)  = 9q°'(P), q~z(P) = [PZq°'(P)] ' 

Evaluating the integrals (4.7) as the sums of the residues at the poles Sl = v + 1, s2 = v - 1, we obtain 
the solutions Yo(P) of matrix equations (4.2), which increases as P --~ ~- If we take the residues at the 
poles s3 = -v, s4 = -v - 2, we obtain the second solution Yffp) of Eq. (4.2), which decreases at infinity 
and is linearly independent with respect to Y0(P). 

Carrying out these operations we obtain the formulae 

Yo(P) = PV+lRv+lA+(v)-pV-lRvB+ (v)' YI(P) = p-VRvA-(v)-p-V-2Rv+l B-(v) 
(4.8) 

R v = [2(2v + 1 ) (2v-  1)] -1 

The matricesA+(v) and B_+(v) are defined by the formulae (~1 = [2(1 - g)]-l) 

A+(v) = 
2(v+ 1 ) -  goN g , l (goV-  2) 

-goN(v + ~; + 2) BIN+2v  

/~+(v) = 

A_(v) = 

-(Bo N + 2v) 

BoN(v + ~;) 

- g 0  N -  2v 

P.0N[v - 4(1 -p-)] 

B_(v) = - [ B o N - 2 ( v + I ) ]  

N(goV - 2) 

2 - g l v  

-[2(v + 1 ) -  BIN] 

- g l ( v  + ~:) 

g i N -  2(V + 1) 

-g l  (v + ~c + 2) 

g l N + 2 v  

(4.9) 

In formulae (4.8) and (4.9) and everywhere below the symbol v means the eigenvalues Vk(k = O, 1, 
2, ...). 

Hence, the general solution of Eq. (4.2) will have the form 

Y(p) = Yo(P)Co + YI(p)C1 (4.10) 

where Co and C 1 a r e  matrix-constants. 
If we have the fundamental system of solutions (4.10) of matrix equation (4.2), we can construct a 

basis system of matrix solutions ~0(P) and ~I(P), which satisfy the matrix boundary-value problem (~ij 
is the Kronecker delta) 

L2~j(p) = 0, o ~ < p < l ,  Ui[~j] = 6ijl; i , j  = 0,1 (4.11) 

By relation (4.10) they will be constructed in the form 

~Fj(p) = Yo(P)C~Jl+ YI(p)C(1 j), j = 0, 1 (4.12) 

while the matrices CI j) (i, j = 0, 1) are found from boundary conditions (4.11). For example, we will 
have the following equations for ~PI(O) 

Uo[Yo(P)]C~I) +Uo[YI(p)]C(~ 11 = O, U1[Yo(p)]C~I) +uI[Y~(p)]C(11) = I (4.13) 

By relations (3.18), (3.19) and (4.8) we obtain 

- V - 2  
U0[Y0(p) ] = y0(c0 = ~V-lRvC+(v), g0[Yl(p)] = Yl(a) = a RvC_(v) (4.14) 
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where 

C+(v) = B+(v)+a2bvA+(v) ,  C_(v) = o~2A_(v)-bvB (V); b v = RvlRv+l (4.15) 

Substituting expressions (4.14) into the first equation of (4.13), we obtain the relation 

c~ ~) = ~-2~-~n(v )c~) ,  n ( v )  = c;~(v)c_(v)  (4.16) 

We can similarly obtain 

U~[Yo(p) ] = Rv+IA+(v) +RvB+(v ) = D+(v) 

UI[YI(O) ] ~-- RvA_(v ) - ev+ 1n_(v) = D ( v )  
(4.17) 

where 

,4+(v) = A(v)A+(v), B+(v) = A ( v - 2 ) B + ( v )  

A_(v) = A ( - v - 1 ) A _ ( v ) ,  B_(v) = A ( - v - 3 ) B _ ( v )  (4.18) 

A(v) = N v 

v + 1 - g ( v -  1) - g  

and in all the elements of the matrix A(v) we have made these replacements of the number v, except 
N = v(v + 1), the expression for which remains unchanged. 

Substituting expression (4.16) into the second equation of (4.13), after multiplying the equation 
obtained by o~ 2v ÷ 1, we obtain 

C(l 1) = C( 2 v *  l [D+(v)D(v) + o~ 2v+ ID_(v)]-I (4.19) 

Taking (4.16) into account, we obtain the second matrix constant 

C~ 11 = D(v)[D+(v)D(v)  + c~ 2v+ID(v)] - I  (4.20) 

Substituting expressions (4.19) and (4.20) into (4.12), we obtain ~ff9) .  
Using similar operations we can also obtain q?0(P), i.e. the construction of the basis system of the 

matrix boundary-value problem (4.1) is completed. 
We will consider a special case of the problems of the theory of elasticity formulated above: we ignore 

the natural weight of the cone (1.1) (fi(p) - 0, i = 0, 1) and assume that boundary conditions (1.5)-(1.7) 
and (1.9) are satisfied, i.e. 3'o = 0, while 3"1 is defined by the third formula of (3.19). The solution of 
vector problem (3.20), by virtue of relations (4.1), can then be written in the form 

uk(P) = alWl(p ) --2qlk 
Vk(P) (1 -- 2g)pl  k 

(4.21) 

i.e. it is sufficient merely to know the single matrix W1(9), obtained above. From//k(P), aS~(p) obtained, 
by virtue of formulae (3.15) we obtain the transforms of the displacements 

ut(r) = uk(r/al), vk(r ) = ~)k(r/al) (4.22) 

Substituting these into expressions (3.8) we obtain the displacements themselves and we thereby 
complete the construction of the exact solution for the special case of the problem under discussion. 

We will consider once again the case when a 0 = 0, i.e. there is a spike in the cone (1.1). We must 
then take the limit as t~ > 0 in the formulae obtained. Then 

C+(v) = B+(v), C_(v) = -bvB_(v) (4.23) 
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and inversion of the matrix C+(v) reduces to inversion of the matrix B + (v). Carrying out this inversion 
using the well-known procedure, we obtain 

B+I(v)  _ - B ( v )  B(V) = 2 (v  + 1 ) - [ . t l N  l i l Y - 2  

P-0Nh(v) ' -g0N(v + ~:) I, t0N+ 2v (4.24) 

h(v) = g lN+2(~c+glv)+(V+~Z)0-qv-2)  

By virtue of relations (4.15), (4.16) and (4.24) the matrix D(v) takes the form 

D(v) = bv[goNh(v)]qB(v)B_(v) 

and we obtain from relations (4.16) and (4.19) 

C (1) -__ D(v)[D+(v)D(v)] q, C(I 1) = Ot 2v+ 1[D+(v)D(v)] -1 

When o~ -+ 0, by virtue of expression (4.19) C(11) = 0, and hence formula (4.12) takes the form 

hUl(p) = Yo(P)D(v)[D+(v)V(v)] -~ 

(4.25) 

As above, knowing ~l(P), by Eq. (4.21) we obtain the transforms (4.22), and from them, using the 
inversion formulae (3.8), we also obtain the required displacements u(r, 0) and v(r, 0). 

5. C O N S T R U C T I O N  OF G R E E N ' S  MATRIX OF THE V E C T O R  
B O U N D A R Y - V A L U E  P R O B L E M  AND THE EXACT S O L U T I O N  OF 

THE P R O B L E M  

As we can see, for the complete solution of the vector problem in accordance with expression (4.1) we 
need to construct Green's matrix G(P, ~). 

To do this we first construct the fundamental matrix ~(p, ~), i.e. such a matrix that the solution of 
the inhomogeneous differential equation of the problem (3.20) can be written in the form 

l 

y(p) = I~(p ,  ~)f(~)d~ (5.1) 

0t 

With this aim, we will write the equation mentioned in the form 

LaY(P) = f(9), 0<p<o~  (5.2) 

assuming that the right-hand side is only non-zero in the section [(x, 1]. To find the solution of Eq. (5.2) 
we will apply an integral Mellin transformation to it, i.e. we change to the transforms 

1 

Ys ---- ~ p S - l y ( D ) d P ,  fs ---- I%-sf(~)d~ ( 5 . 3 )  

0 a 

As a result we arrive at the following algebraic equation 

M(s)y, = Is, M(s) = M(-s) (5.4) 

The matrix M(s) is defined by formulae (4.4). 
Solving algebraic equation (5.4) and inverting the Mellin transforms (5.3), we obtain a solution of 

Eq. (5.2) and thereby obtain the fundamental matrix 

p  IM-I(-sW d  (5.5) 
i 
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If we assume vk > 1 (k = 0, 1, 2, ...), the contour l will be a straight line parallel to the imaginary 
axis and intersecting the real axis in the interval (0, 1). Then, as in Section 4, the matrix integral (5.5) 
reduces to calculating the scalar integrals 

1 fx-S[1,  s, s(s - 1)]ds; 
= p4(---CzT = 72( ) = 

/ 

(5.6) 

where it is sufficient merely to evaluate the first integral, while the remaining ones, as previously, can 
be evaluated from the last two formulae of (4.6). Using the standard scheme of contour integration, 
we obtain 

r - v ~  (v +2)~ 
l~X / % - x  t%+ 1, x > l  

?0(x) = E/ v - l ~  v+l~ 
kX Kv- -X /%+1 '  X< 1 

(5.7) 

Hence, from Eqs (5.5) and (5.6) we have 

{I}(x) = 
I2(x)  - tl.N-lo(x) 

N[g011 (x) - 2g.10(x)] 

-~1[I1(x) + ~:10(x)] 

J'e(x) - (2 + g,lN)-Io(x) 
(5.8) 

Green's matrix can now be obtained from the formula [8] 

1 

G ( p , ~ )  = O ( p , ~ ) -  2 ~ J ( O ) ( U J [ O ( P ' ~ ) I )  -1 
j = o  

(5.9) 

The matrices ~Fj(p) are defined by formulae (4.12), where the matrix q~l(P) is completely defined and 
~0(9) is found in a similar way. 

Hence, formula (4.1) when 70 = 0, taking expressions (5.9) and (4.12) into account, gives the solution 
of the vector boundary-value problem, and together with this also an exact solution of the problem of 
the theory of elasticity in question in the case of boundary conditions (1.5), (1.6) and (1.8). For the 
boundary conditions (1.7) and (1.9) the proposed scheme is completely preserved; only the form of the 
boundary functional U0[y(p)], defined by formula (3.18), is changed. 
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